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Galton boards, found in museum exhibits devoted to science and technology, are often used to demon-
strate visually the ubiquity of so-called “laws of probability” via an experimental realization of normal
distributions. A detailed theoretical study of Galton-board phase-space dynamics and statistical
behavior is presented. The study is based on a simple inelastic-collision model employing a particle fall-
ing through a spatially periodic lattice of rigid, convex scatterers. We show that such systems exhibit in-
determinate behavior through the presence of strange attractors or strange repellers in phase space; nev-
ertheless, we also show that these systems exhibit regular and predictable behavior under specific cir-
cumstances. Phase-space strange attractors, periodic attractors, and strange repellers are present in nu-
merical simulations, confirming results anticipated from geometric analysis. The system’s geometry (dic-
tated by lattice geometry and density as well as the direction of gravity) is observed to play a dominant
role in stability, phase-flow topology, and statistical observations. Smale horseshoes appear to exist in
the low-lattice-density limit and may exist in other regimes. These horseshoes are generated by homo-
clinic orbits whose existence is dictated by system characteristics. The horseshoes lead directly to deter-
ministic chaos in the system. Strong evidence exists for ergodicity in all attractors. Phase-space com-
plexities are manifested at all observed levels, particularly statistical ones. Consequently, statistical ob-
servations are critically dependent upon system details. Under well-defined circumstances, these obser-
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vations display behavior which does not constitute a realization of the “laws of probability.”

PACS number(s): 05.45.+b, 03.20.+1i, 46.10.+z

I. INTRODUCTION

Consider a Galton board consisting of inelastic pegs ar-
ranged on a vertical board in a hexagonal array. At the
top, noninteracting spheres are released, colliding with
the pegs as they fall under the influence of gravity. The
spheres collect in bins at the bottom, and a Gaussian dis-
tribution is experimentally observed, peaked under the
point of release. Moreover, the same Gaussian distribu-
tion is observed in replicate experiments. The Galton
board is used to visually demonstrate the existence of
random processes, or the so-called “laws of probability,”
in nature [1]; typically, an appeal is made to Bernoulli
processes or binomial distributions. Ironically, the laws
governing Galton-board behavior are purely determinis-
tic; the system as a whole obeys Newton’s laws of motion.
We wish to establish why and under what circumstances
these systems are observably random. Moreover, we wish
to describe the statistical observations given known sys-
tem parameters. Hence our goals go beyond the mere
demonstration of Gaussian behavior. We wish to observe
where such behavior fails to exist and to glean therefrom
an understanding of the mechanisms that drive this and
related systems.

The Galton board provides an example of a system
which apparently displays complex, indeed chaotic and
indeterminate, behavior while being computationally
tractable and retaining physical relevance. The physical
system itself resembles a crystalline medium. Our
analysis may therefore underlie a rich variety of disper-
sive processes, leading to possible insights pertinent to
novel approaches to chromatography and other separa-
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tion processes [2]. As an example, we will see that there
are regions where small changes in system parameters re-
sult in significant differences in system evolution charac-
teristics, e.g., terminal velocity and diffusivity. If one
wishes to separate a mixture of two types of spheres, say
with close but not identical diameters or elasticities, he
can find or construct a lattice such that the interaction of
one type of sphere is drastically different from that of the
other type of sphere. A dynamical separation process is
therefore possible.

As another example, one may look to Josephson junc-
tions. The evolution equations for the Galton board at
high densities resemble those for a simple type of cou-
pled, driven oscillator, an example of which is a special
system of Josephson junctions [2]. Qualities that exist in
Galton-board phase-space behavior may have analogs in
the oscillator system. We will not explicitly treat these
possible applications in this paper. We offer them only as
possible motivations for studying this system.

How randomness originates in Galton boards is not
immediately obvious. Accordingly, we will investigate
the contributions of lattice geometry and density, interac-
tion elasticity, and system symmetries to apparent ran-
domness. We will determine the long-term behavior of
Galton boards as characterized by attractors in phase
space. These attractors define the qualitative nature of
the system, particularly the fundamental question of
whether determinate or indeterminate behavior dom-
inates in long-time limits. We will also investigate bifur-
cations of the attractor under parametric changes. This
will also contribute to understanding the origin of in-
determinism in circumstances where it is observed to ex-
ist.
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How system characteristics affect statistical observa-
tions is also not transparent. The Gaussian behavior ob-
served in practice suggests that Galton boards manifest
relatively simple diffusive attributes, at least for the
classes of experiments performed. Whether this behavior
is maintained under all conditions is not clear. There-
fore, we will investigate the effects of parameter manipu-
lation on ensemble average velocity and dispersion. We
will investigate the existence of a mean terminal velocity
and its dependence on system parameters. Moreover, we
will simultaneously address the existence of diffusive
behavior and deviations therefrom.

To confront these matters, the definition of “Galton
board” needs to be modified. In what follows, a Galton
board is defined as a spatially periodic array of rigid, con-
vex scatterers possessing several key characteristics. An
example is shown in Fig. 1. The lattice has a characteris-
tic density ¥ €(0,1) defined as the scatterer diameter yb
normalized by the linear unit-cell dimensions b. Our
study will be restricted to two dimensions, enabling the
unit-cell shape to be characterized by a single angle ¥
once the cell lengths have been normalized to unity. The
system consists of either a single point-sized particle or a
noninteracting ensemble of particles, each interacting
only with the Galton board and each moving under the
influence of a constant gravitational acceleration g, where
B is the angle of this vector from the horizontal. The in-
teraction between particles and scatterers is inelastic in
general and is quantified by a restitution coefficient
e €[0,1] in a direction normal to the scatterer surface.

Heretofore, analysis of Galton boards [3,4] have been
limited to the purely elastic case. However, by energy-
conservation constraints, this case cannot approach an
attractor in phase space. Consequently, Newtonian
mechanics is abandoned in such analyses in favor of iso-
kinetic mechanics. We address the energy problem in a
more intuitive way by introducing inelasticities in in-
teractions between particles and scatterers. Additionally,

FIG. 1. Particle falling through a spatially periodic array of
rigid scatterers. Gravity drives the particle’s motion through
the lattice at an angle 3 from the x, axis. The x, axis is perpen-
dicular to the x,; axis. The unit cell for the lattice is a rhombus
with sides of length b, where one pair of sides is parallel to the
x, axis and the other makes an angle ¥ from the x, axis. Col-
lisions occur off scatterers whose restitution coefficient is e and
diameter is yb. The scatter’s center is at the center of the
rhombus, lying at the point of intersection of the two diagonals.
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existing analyses do not provide a comprehensive study
of parameter variations, an identification of sources of in-
stability and indeterminism, or general criteria for the
presence of anomalous behavior. We will deal with each
of these matters.

The Lorentz gas, which has been studied extensively
[5—15], is identical to a purely elastic Galton board when
gravity is absent. Consequently, results ascertained from
the analysis of Lorentz gases has relevance to the present
work. Seminal work by Sinai [5] established that Lorentz
gases are ergodic and K systems. Analytic arguments
along these lines were continued into the 1970s [6-38].
More recently, Lorentz gases have been the subject of
numerous numerical simulations [9-15]. Apart from be-
ing restricted geometrically, these tend to be focused on
the evolution of velocity autocorrelation functions. We
will not employ these functions in the ensuing study. We
find that the information concerning bifurcations in
phase space and desired statistical quantities are more
easily obtained from other sources.

The bouncing-ball problem [16-21], in which a ball
collides inelastically with a sinusoidally moving table, has
elements in common with the Galton board problem.
Moreover, the bouncing-ball problem is far simpler
mathematically. Bifurcations from periodic to chaotic
behavior are observed [16]. Smale horseshoes exist in
certain parameter regimes. Such behavior may carry
over into Galton boards.

While integrating aspects from both the Lorentz gas
and the bouncing-ball problem, the Galton board
possesses unique aspects absent from either. Therefore,
accessing the Galton board’s unique underlying structure
will be essential to understanding its observed behavior.
There is a difficulty, however, in doing so with any degree
of mathematical rigor. As we shall see, the Galton-board
phase space may be represented as a three-dimensional
discontinuous map. Such systems are not completely un-
derstood from a dynamical systems point of view. More-
over, what is understood requires an explicit form for the
map itself: something which is difficult to come by for the
Galton-board system. Additionally, many proofs require
a priori existence of well-defined structures such as
periodic cycles or homoclinic orbits. The only practical
means (that the authors are aware of) by which such ob-
jects can be known to exist for certain are numerical.

Therefore, we will not make an attempt for mathemati-
cal rigor in this paper. Rather we will make an appeal to
geometric and physical considerations to ascertain quali-
tative properties of the system, while supplementing such
analysis with explicit numerical simulations of the sys-
tem. In Sec. II, we begin by investigating the details of
trajectory evolution. Issues concerning trajectory stabili-
ty and attracting domains are treated therein. In Sec. III,
we identify possible characteristics of an attracting
domain in phase space. A Poincaré section is defined and
a mapping that characterizes Galton-board dynamics is
constructed. Smale horseshoes appear in limiting cases;
the presence of strange and periodic attractors in phase
space is addressed. In Sec. IV, we furnish numerical re-
sults that complete the dynamical systems analysis by
providing concrete examples of attracting behavior. Fi-
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nally, in Sec. V, we present statistical observations based
on numerical simulations. We focus therein on the pres-
ence and absence of random behavior in particular pa-
rameter regimes. Interesting exceptions to expected
Galton-board behavior, characterized by a failure to pro-
vide a realization of the “laws of probability,” are dis-
cussed.

II. PHASE FLOW DYNAMICS

In this section we wish to deal with the microscopic de-
tails of the system. Specifically, we wish to examine how
trajectories behave in phase space. Three topics are of
particular interest: behavior of trajectories during col-
lision, stability of trajectory evolution, and existence of
regions of attraction. We begin by examining the ordi-
nary differential equation (ODE) set that governs system
behavior.

A. The ODE system

The equations describing Galton-board systems may be
formulated as the dynamical system

ax _,

dt ’

dv (1)
?:8+5c(x,v;%e,¢) ,

where g is the constant gravitational acceleration vector
(g=gg*) of magnitude g =|g| and 8, is the impulsive
collision acceleration vector (8, =g8}). The functional
dependence of 8. on the position vector x of the particle
is manifested through the parameters ¥ and ¥ character-
izing the lattice geometry; its dependence on the velocity
vector v is manifested through e, the restitution
coefficient. One can nondimensionalize the system (1)
such that no scale-dependent parameters remain:
x*— X x__V
A
Upon incorporating this normalization, the dynamical
system equations of particle motion adopt the form

, t*=tVig/b . (2)

dx* _

dt* -V
dv*
dt*

Accordingly, the system is completely characterized by
three phase variables (¢*,x*, and v*) and four charac-
teristic parameters (7, e, 3, and ).

The system behavior will be investigated as these four
parameters are varied. In this context, the ordinary
differential equation system (3) proves to be inconvenient.
All interesting dynamics is condensed into the collision
term which—being impulsive—is not well characterized
as an acceleration. This collision term is more suitably
employed in an algorithm for computing individual tra-
jectories (cf. the collision equations derived later in this
section). A geometric analysis appealing to this algo-
rithm will be used for system study. The system (3) will

’

(3)

=g*+8X(x*,v*;y,e,¥) .
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be used only as a formal guideline for studying the
dynamical systems behavior of the Galton board.

As the scattering lattice is periodic in position space,
so too must be the impulsive collision acceleration term.
As such, position space may be represented as a unit cell
or torus, whence the phase space is homeomorphic to
T?®R? with the real plane constituting velocity space.
There exists only one scatterer in toroidal phase space. A
typical trajectory winds around the torus while moving
with constant speed in velocity space along the direction
of gravity. Eventually the trajectory encounters the
scatterer, whereupon the velocity is reoriented. The tra-
jectory then continues as before until the next encounter,
and so on.

There is only one fixed point in phase space, namely
the point on the scatterer surface whose normal points in
a direction directly opposite to that of gravity. Since the
scatterer is convex, this point is unique and hyperbolical-
ly unstable. Small displacements to the left or right cause
the particle to move away from the fixed point. Displace-
ments opposite to gravity cause the particle to bounce re-
peatedly on the surface until dissipation brings the parti-
cle to rest at the fixed point. The presence of this point
may generate indeterminacy in the system’s behavior
since there may exist homoclinic orbits connecting the
fixed point to itself. Chaotic behavior will be addressed
later, after the machinery needed to deal with such an is-
sue is in place. The fixed point represents rather trivial
dynamics at this point. Understanding more interesting
phase flow behavior requires an investigation of the reori-
entation process associated with a collision. Accordingly,
in what follows, we examine the dynamical consequences
stemming from a particle colliding with a rigid surface.

B. Collision relations

Let three parameters, namely 6,¢,v, be specified for a
particle incident to collision, as depicted in Fig. 2. The
two post-collisional parameters v’ and ¢’ are computed
assuming inelastic rebound from a frictionless scattering
surface. These latter parameters may be evaluated via an
algorithm summarized in Fig. 3. First, imagine that Fig.

incident

FIG. 2. Particle colliding with a scatterer. An incident ve-
locity vector with magnitude v = |v| and incidence angle ¢ from
the x, axis is scattered off a surface whose unit outward normal
n is at an angle 6 from the x, axis. The vector is redirected with
magnitude v’, making an angle ¢’ relative to the x, axis.
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Lv' cosn'=vcosT, v'sinn'=-evsinn J

(a) ®) (c) ()

FIG. 3. Computation of collisional changes. (a) This figure is identical to Fig. 2. (b) Figure 2 is rotated so that the tangent vector t
to the scatterer is now pointing in the +x-axis direction. This serves to define the angle 7. (c) The new velocity vector is computed
such that the component normal to the surface is —e times the original, whereas the component tangential to the surface remains

unaffected. (d) Finally, the tangent vector is rotated back to its original orientation.

3(a), which is identical to Fig. 2, is rotated such that the
tangent to the scatterer points in the x, direction. Next,
the collision algorithm is applied. Finally, the system is
returned to its original orientation, Fig. 3(d). The new
velocity vector has magnitude v’ and makes an angle ¢’
with the x axis.

Given an incident velocity vector in an arbitrary direc-
tion, its new direction following scattering can only adopt
particular values, depending on the parameters assigned.
Assume @ =0 for simplicity; no generality is lost since the
reference direction can always be rotated. Begin with in-
cidence angles 6 varying from — /2 to 7 /2. The boxed
equations shown in Fig. 3 demand that since n=m/2—0,

v'cosn’ =v cos(m/2—6)=v sinb ,
v'sinn’ = —ev sin(7/2—0)= —ev cosO .
But, from trigonometric identities,
v'cosn’' =v'cos(m/2—0+¢')
=p'(sind cosp’ —cosh sing’)
..v'cosn’ =v|sinf—vjcosb ,
v'siny’ =v'sin(7/2—0+¢’)
=v’(cosO cosg’ +sinb sing’)
.v'sing’ =vicos@+v5sind .
Therefore,
v sinf=v{sind—v}cosh ,

—ev cos@=v]cosf+vjsinb ,

whence
(v —v})tanf=—v; ,
ev+tvi]=—vjtand .

These combine to yield
(v—vi)ev+vy)=v? .
Consequently, we achieve the desired relation

e+1
2

2
v'l—l-e;l +o2=

v v

relating the incident and recoil velocity vectors.

Equation (4) suggests that, for a specified incident ve-
locity vector v, the allowed recoil velocity vectors v’ form
a circular locus in velocity space. The point where v’ is
greatest coincides with the +v direction, in which case
v'=v. The v’ locus near this point of maximum magni-
tude consists of those grazing trajectories arising from
collisions occurring nearly tangent to the scatterer. The
point where v’ is smallest corresponds to the —v direc-
tion, for which circumstances v’'=ev. The v’ locus near
this point of minimum magnitude consists of those trajec-
tories arising from collisions occurring nearly normal to
the scatterer. Note that v’ <v in all cases. This inequali-
ty suggests that collisions drive trajectories towards the
velocity-space origin, an essential feature if attractive
behavior is to exist.

In what follows, we will often examine trajectories in
velocity-space projections of phase space, permitting us
to take advantage of two-dimensional space visualization
over that of four-dimensional space. Figure 4 exhibits a
typical phase trajectory when projected onto velocity
space. This visual aid will later be used to envision at-
tracting regions in phase space, as well as to rationalize
particular details of the Poincaré map.

C. Trajectory stability

Trajectory stability proves critical in identifying chaot-
ic or regular attractors in phase space. Consider two
proximate phase points whose coordinates are (x,v) and
(x+Ax,v+Av), respectively. Let both points evolve
during the free-fall process prior to collision: their
behavior under collision will be investigated later. Since,
between collisions, both particles accelerate at identical
rates, d(Av)/dt=0. Hence no divergence or conver-
gence in velocity space is expected while both particles
undergo free fall. Integration of the identity
d(Ax)/dt=Av reveals that Ax(¢)=(Av)t+Ax, where
Ax, denotes the position-space separation at time z =0.
Given sufficient time during free fall, |Ax| diverges [22].
Once |Ax|~=1, the two trajectories have moved into
different regions on the torus representing position space,
and the trajectories have thus effectively decorrelated
during the free fall.

Consider the behavior during collision of two close tra-
jectories characterized by (6,¢,v) and (6+A60,
@+Ap,v+Av), respectively. In such circumstances,
upon defining
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FIG. 4. Trajectory in velocity space. At ¢ =0 the trajectory
starts at some arbitrary point. It increases at a constant rate in
the direction of gravity g* until a collision occurs at 4. The
recoil velocity lies somewhere on a circle passing through A4;
where specifically on the circle this occurs depends upon the po-
sition on the scatterer at which the collision occurred. Suppose
that the new velocity is situated at B. Gravitational effects
resume until another collision occurs at C. The process repeats
itself following each collision.

n=¢—0+mw/2,
we find that
n+An=(p+Ap)—(0+A0)+m/2,
whence
An=Ap—Af8 .

In turn, from the boxed equations in Fig. 3,

(v'+Av")cos(n’+An')=(v+Av)cos(n+An) ,
(v'+Av")sin(n'+An')=—e(v +Av)sin(n+An) ,

requiring that

tan(n’'+A7n')=—e tan(n+A7) ,

tanny’ + An’sec? ' = —e[tany+ Ansec’n] .
Employing the boxed equations in Fig. 3, the latter equa-
tion implies

2.1
An'=—e Aﬂﬂzﬂ‘ .
cosn
Consequently,

2
Ag'=A0—e(Ap—A0) ]
cos’n

or, equivalently,
2
Ap'=A0—e(Ap—AO)— . (5)
v

In reference to the preceding equations, one may al-
ways define A6 so as to satisfy the inequality A6 > 0.
When e =1, it follows that v'=v, whence |A¢’| > |Ag]| if
A@p =0, i.e., when trajectories point away from each oth-
er. The scatterer convexity thus causes a divergence be-
tween proximate velocity vectors in this perfectly elastic

case. However, when e <1, nothing can be said about
whether Ag’ is larger or smaller than Ap. With smaller
e, the pre-collision parameter Ag becomes less significant.
Indeed, when e =0, A@’ depends only on Af. Differences
between trajectories are mollified upon collision when in-
teractions between particle and scatterer are inelastic.
Hence there exists a balance between competing effects,
namely, scatterer convexity enhances the divergence of
initially close trajectories, whereas scatterer inelasticity
enhances their convergence. As inelasticity was previ-
ously observed to drive such trajectories closer to the
velocity-space origin, inelasticity also contributes to tra-
jectory stability as embodied by convergence.

D. Regions of attraction

We wish to identify whether there exist regions where
trajectories converge. To do this, we will examine the na-
ture of trajectories that are divergent in phase space. It is
useful to consider the Galton-board phase space to be im-
bedded in the phase space of another system, viz. the dis-
sipative Lorentz gas. This imbedding leads to important
conclusions concerning the behavior of possibly divergent
trajectories in phase space.

Since the only way in which a trajectory can be un-
bounded is to go out to an infinite velocity magnitude, we
wish to study trajectory behavior as v— c. But recall
that at large v, gravity is for the most part negligible.
The system may be treated as a dissipative Lorentz gas
(DLG). In effect we can envision the phase space of the
Galton board as being imbedded in the phase space of a
DLG. But the attractor for the DLG is trivial; it is the
origin. Particles in the lattice eventually lose all their en-
ergy and come to rest asymptotically. Interestingly
enough, the DLG phase space is identical for arbitrary
scalings in the v direction, i.e., the dynamics of a DLG
are independent of the velocity magnitude. This state-
ment can be deduced from discussion concerning col-
lision relations in Sec. II B.

However, one cannot draw an immediate conclusion
about an attractor in Galton-board phase space from the
above considerations. Two points are important to note:
First, as a trajectory approaches the origin, gravity be-
comes increasingly important, leaving the DLG approxi-
mation increasingly suspect. Second, the perturbative
effect of gravity, even in the DLG limit, can effect an en-
ergy increase between collisions that challenge the ex-
istence of a definitive bounding velocity.

Before embarking on the characterization of the DLG
limit, we introduce a function that will help characterize
the lattice. We define A(O,n) to be the length of a line
segment attached to a scatterer at 6 and pointing in the n
direction. The line segment terminates at the next
scatterer encountered. A(6,n), therefore, is the free path
of a particle in a DLG. Note that A(9,n) will be finite for
a finite scatterer diameter.

Let us now identify at what v gravity is negligible.
Consider a typical r(z) between collisions. Under the
influence of gravity,

r(t)=vot+1igt?, v(t)=vyo+gt,
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where the origin of the coordinate system is at the initial
point on the scatterer. Let T be the time at which the
particle collides, with the next scatterer for the actual
system. Let T, be the time at which the particle collides
with the scatterer for the DLG approximation. Consider
the system close enough to a DLG that both the particle
for the actual system and that for the approximation col-
lide with the same scatterer. The difference between T
and T, will clearly be small.

We wish to find the difference r(7)—r(T,). When
gravitation is negligible, the magnitude of this quantity
will be small compared with the magnitude of r(T,).
Consider the following Taylor expansion:

o(T)=0(Ty)+ [T —Tyv(T,)
+ T =T, Pg+O0([T—T,]") .

Using the relations r(Ty)=v,To+gTy>/2 and

ro(To)=v,T,, we get finally
(1) —1y(To)=1gTi+[T —TyIv(Ty)
+1T—T, g +0(T—T,]) .

We want this quantity to be small relative to the magni-
tude of r(T,). We wish to set vy to some large value.
But in this case, the terms in the previous equation con-
taining T — T, should go to zero. Therefore, we choose

1gTo=ery(Ty) ,

ro(To) |?

1
2

> =ero(T,) ,

where € is a small number. But recognize that ry(T) is
none other than A(6,n). Substituting and rearranging
terms yield the following requirement for the neglect of
gravity:

v =—=—gA(6,4), (6)

where, once again, € is a small number. Therefore, so
long as condition (6) is satisfied, trajectories will converge
onto the origin, i.e., v, <v,q4- This is a consequence of
the DLG limit. This statement is not quite true, howev-
er. There will be a fraction of trajectories that will in-
crease in v between collisions. This leakage of trajectories
exists as a result of the unavoidable perturbative effect of
gravity. Let us estimate this fraction. From Fig. 5, one
can see that the following relation must hold:

2 2

1—e 1+e

2 2 2

= |— + —_—

v 2 |° 2

—2v'2————————(1_21:1+e)cos(7r—(p) R

2 2 2

v: _ l+4e 1—e

o2 2 + 2 cosQ .

But we know the relation between v’ and v:

vi=v+tgt,
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FIG. 5. Leakage from the attracting region. Gravitation car-
ries the system from point A to point B (cf. Fig. 4). The embol-
dened arc is the circular locus representing the redirected veloc-
ity vector of those trajectories which are incident to a scatterer
at point B. In the DLG limiting case, n and n’ are almost iden-
tical.

v =v ﬁ_+_g*g)»(62,n) R
v
Av =y ~v 1+ﬁ'g*gki)92’n) )

Y ~1+42edog®) .
v

Substituting into the law of cosines relation and noting
that ¢ is a small angle,

1_

2
1—4e(fi-g*)+0 ()~ 1——g*+0(p*) .
Therefore, the fraction F of trajectories that increase in
energy between collisions for a given € is

172

ng*

2 4
Fe2P 122
2 € 1—e?

o

Therefore, so long as v is on the manifold as designated
by Eq. (6), where v is replaced by v, the energy will de-
crease between collisions (including redirection) with the
exception of a fraction of trajectories proportional to €'/?
when v ~€7!/? and € is a small number. Note that this
fraction of trajectories are those trajectories that collide
nearly tangent to the scatterer as suggested by Fig. 5.
There appears to exist an asymptotic bounding of phase-
space trajectories We can therefore expect there to exist
an attractor in the phase space of the Galton-board sys-
tem.

Note that the bound placed on the attracting region as
specified by Eq. (6) may be greatly improved in portions
of phase space where the direction of velocity is opposite
that of gravity. In such regions, gravitation itself causes
v to decrease between collisions so long as

At ’

v -———§ T (6"
1fi-g*|

where At is the time between collisions. This condition

ensures that v is not so small as to start increasing from
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major axis

unit cell

S S
— _ma;or axis
S

S ©

0

FIG. 6. Typical behavior of A(6,n) and major and minor
axes. Since the system is in two dimensions, n may be
represented by a single angle ¢. Note that A will vary with
changing 6, but the velocity dependence is most relevant here.
The directions close to the unit-cell directions, and where A is
large, are termed the major axes. The other directions with
large free path will be termed the minor axes.

gravity’s effect.

When A becomes very large, the attractor may reach
out into large energy regions. In the way we defined the
lattice, directions close to the directions used to define
the unit-cell rhombus will have large A. Let us call any
direction with large A a lattice axis. Moreover, those lat-
tice axes which are associated with the unit-cell direc-
tions will be called major axes. All other lattice axes will
be designated minor axes. Figure 6 schematically depicts
A for a typical lattice. We will see later that these axes
play a role in determining the behavior of attracting sets.

To summarize, a combination of two effects is shown
to exist, namely attraction to a bounded domain and loss
of initial information. Both suggest the existence of an
attractor in phase space. Moreover, the general criteria
for trajectory stability suggest under what parameter
ranges an attractor is periodic or strange. The more tra-
jectories are stable, the more likely the attractor is
periodic or quasiperiodic. Conversely, the more trajec-
tories are unstable, the more likely the attractor is chaot-
ic. Additional features of the attractor’s characteristics
may be extracted from a particular Poincaré map.

III. POINCARE MAP DYNAMICS

A. The Poincaré section

Choose a Poincaré section at the scatterer surface and
plot points in phase space at times such as 4 and C in
Fig. 4. One could also take points at B and D, but the
former selection is more revealing. The remainder of the
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trajectory is unenlightening and, indeed, obfuscates im-
portant behavior when projected onto velocity space.
The Poincaré section reduces the number of interesting
phase-space dimensions to three, the two velocity-space
dimensions plus an angle representing the point on the
scatterer surface at which the collision occurs. Conse-
quently, the Poincaré section, hereafter referred to as X,
is homeomorphic to S!®R2 Since the scatterer is con-
vex, there exists a unique value of 6 for every point lying
upon the surface. Figure 2 physically depicts the three =
variables, namely v, @, and 6.

The Poincaré section shown in Fig. 7 possesses several
notable features. First, all points occupy only half of =
since n-v <0, where n is the unit outward normal to the
scatterer at 0, as in Fig. 2. The helicoid that represents
the boundary between the two halves represents the locus
n-v=0, its axis corresponding to the line v=0. The fixed
point lies on this surface along the axis v=0 at 6=0,.
There exists a surface in Fig. 7 running through the verti-
cal line intersecting the fixed point. The surface
represents those points that are unstable under small dis-
placements. Note that this surface includes all points
that eventually map onto the fixed point. More impor-
tantly, it includes all high-velocity trajectories that are in-
cident normal to the scatterer. One can see this to be the
case when one considers the DLG limit [23]. This sur-
face will be referred to as the hyperbolic boundary since
those points in = which lie to one side of the surface map
in a particular direction, whereas those points on the oth-
er side map in the opposite direction. The hyperbolic
boundary does not generally partition the region bounded

/ /
<

velocity space ! 0

FIG. 7. The Poincaré section. Velocity space is represented
by the face parallel to the plane of the paper, with 6 the depth.
The helicoid is the manifold representing the locus of trajec-
tories that collide tangentially with the scatterer. Since only in-
cident trajectories are represented, all points in = must lie above
this surface. The fixed point is located at v=0 and 6=06,. Rela-
tive to the helicoid’s orientation, gravity points upward. The
manifold running through the vertical line emanating from the
fixed point consists of those points which eventually map onto
the fixed point. For clarity, the section where
0€(6y+1/2,06y+3m/2) is not shown.



47 PHASE FLOW AND STATISTICAL STRUCTURE OF GALTON-. .. 3135

by the helicoid. One can envision a special case of this
manifold by considering all those particles that bounce
repeatedly on the fixed point until they come to rest.
Any particles with momentum to the left will scatter to
the left, whereas those with momentum to the right will
scatter to the right.

The Poincaré map f: 2—3 takes those elements
representing the state of the system at incidence and
maps them into those subsequent system states corre-
sponding to incidence at the next collision. This is a
closed map for all =, except that subset of 3 possessing
relative measure zero, the latter representing states which
do not subsequently collide with any scatterers. One can
incorporate the graphical algorithm depicted in Fig. 4 to
show how the map affects £. Now, however, the circular
locus in v space is a projection of an arc in = possessing a
unique v for a given 8. Gravity’s effect on system evolu-
tion is identical to that represented in Fig. 4, except that
the new 6 appropriate to the next collision is uniquely
determined; the particular value that 6 adopts depends
upon the map’s details.

B. Unit cell partitions of =

The map f partitions X into disjoint regions { P}, such
that all elements in each region collide with a scatterer in
a particular unit cell. Figure 8 depicts several illustrative
trajectories. Each point in 3 (except for those few which
do not collide with scatterers) lies in exactly one region P.
Boundaries between regions possess the following inter-
pretation: if a point in 2 lies on a boundary, it collides
tangentially with a scatterer, as depicted by those trajec-
tories in the upper-left-hand corner of Fig. 8. All parti-
cles represented by interior points do not collide tangen-
tially with a scatterer, but rather collide such that a
nonzero change in velocity occurs. The partition then
may be described as a primary unit-cell partition; given
any point in 2, the partition determines the next unit cell
within which the collision occurs. The partition is noth-
ing more than the inverse mapping of the helicoid
representing the locus n-v=0. Trajectories appearing in
the lower-right-hand corner of Fig. 8 suggest that a
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FIG. 8. Unit cell partition. Two trajectories originating
within the same unit cell (0,0), and colliding in the same unit
cell (m,n), are assigned to the same region P in the unit cell par-
tition.

boundary maps into fwo marginally decorrelated regions.
A trajectory close to a boundary is unstable to some de-
gree. More importantly, however, is the fact that each
region P has the possibility of containing some portion of
the hyperbolic boundary. If so, trajectories on opposite
sides of that surface become completely decorrelated.

The process can be repeated. If f represents the map,
then f: £—X is a function such that P—->QCZX3. If Q
contains boundaries from the primary partition, then fol-
lowing the second collision, P partitions into two or more
regions. The process repeats itself. Each PCZX can be
partitioned into regions which remain within the same
unit cell after two collisions. Call these smaller regions
P’. One can then partition P’ into still smaller regions
P, which remain within the same unit cell after three
collisions, and so on.

Consider a general unit cell partition constructed over
an infinite number of collisions. Since all trajectories ap-
proach the region near the velocity-space origin as indi-
cated in Sec. II D, and since boundaries do not map into
themselves in general [24], there necessarily exist an
infinite number of boundaries lying within the finite
domain defined by the attractor. Hence regions densely
populated with boundaries coexist with those possessing
no boundaries at all. These open (boundary-less) regions
must map into one another, for if they mapped into re-
gions with boundaries, the regions themselves would con-
tain boundaries—a contradiction.

Consider those regions densely populated with boun-
daries. Recall that the partition boundaries correspond
to tangential collisions, whence regions densely populated
with partition boundaries possess high-energy trajec-
tories. Physically, it can be seen that these high-energy
trajectories occur in lattice-axis directions proximate to
the direction of gravity. But at higher energies, the hy-
perbolic boundary tends to be relatively exposed in each
region of the unit cell partition. Therefore, decorrelation
occurs in regions highly populated with partition boun-
daries. In general, the hyperbolic boundary may possibly
be encountered within every region enclosed by partition
boundaries. However, the hyperbolic boundary may also
be shielded by other scatterers. Which scenario actually
occurs depends strongly on the map itself. Consequently,
the system’s description is incomplete without a more de-
tailed description of the mapping.

Given the above situation as restricted by geometric
and physical considerations, only a few scenarios seem to
be possible.

(i) The attractor is dense with partition boundaries and
hyperbolic boundaries (i.e., all trajectories decorrelate).
High-energy dissipative chaos exists exclusively.

(ii) The attractor is dense with hyperbolic boundaries,
but not with partition boundaries. Low-energy dissipa-
tive chaos exists.

(iii) The attractor is not dense with hyperbolic boun-
daries. All trajectories eventually map into open regions
which map into themselves, i.e., trajectories avoid parti-
tion and hyperbolic boundaries (by definition of open re-
gions). The attractor will be contained within the open
regions. Stable periodic or quasiperiodic cycles exist, but
with chaotic transients.
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(iv) A combination of the above cases exists with dis-
joint basins of attraction.

C. The limiting case y —0

As y approaches zero, the time interval between suc-
cessive collisions becomes very large and velocities be-
come aligned with gravity. Owing to this large mean free
path, most trajectories are dominated by gravitational
rather than collisional influences. If v should become so
large as to not be significantly affected by gravity, the
particle suffers a collision and hence becomes more sus-
ceptible to gravity after a time ¢ =A/v. The resulting sit-
uation is depicted in Fig. 9.

For Av+#0, initially small differences in Ax grow as the
trajectories evolve. Since all trajectories align, all points
of = lying in a particular region P of the primary unit-cell
partition can possess only small velocity differences Av,,.
Indeed, if A=~gt?/2, then t=~(2X/g)!/? constitutes the
nominal time between collisions. But Ax=(Av)t, al-
though the maximum allowable |Ax| for two points to lie
in the same region P is approximately y. Hence the max-
imum allowable initial velocity difference between two
points lying in the same region P is |Avy|=|Av| =y /t —
a small quantity. Thus the fraction of 2 occupied by any
one region P is very small. But, the scattered velocity
vector occupies all the points on the circular locus, im-
plying that a full 27 range of ¢ is covered by the map of
the region P (this mapping corresponds to a mapping of
each region P onto a region containing the hyperbolic
boundary). Hence any f (P) covers much more of X than
any region P contained in the primary unit cell partition.
Consequently, every region P is partitioned into multiple
regions P/={x EX|f(x)EP; for some P; in the primary
unit cell partition}, each containing the hyperbolic
boundary. But since the new regions constituting P are
merely smaller copies of portions of the original region,
the new regions are themselves partitioned in the next
level partition, and so on. Hence the entire attractor is
dense with hyperbolic boundaries in the infinite collision
partition. This implies all trajectories are unstable and
yet remain within a confined region in phase space.

Axo. Av0

Ax, Av=A\b

FIG. 9. Alignment of trajectories. Trajectories tend to align,
given sufficient time to fall between successive collisions. More-
over, the fixed point is exposed to the trajectories. Hence
scattering occurs in all directions.
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Therefore, a strange attractor is present in the low-
density limit.

We wish to ascertain the existence of a Smale
horseshoe in 2. Let us examine X in a more coarse way.
In essence, upon each collision, a particle is scattered
right or left. Then let a point in phase space be defined
by a string of R’s or L’s where the nth character
represents the direction of scattering upon the nth col-
lision. Let us just examine the first collision. X is divided
into two regions, either R, or L. Each of these regions
is mapped onto £ in such a way as to be partitioned by
the boundary separating the original R, and L, regions.
The second character in the string indicates which of
these regions the original trajectory maps into.

Note that there is a one to one correspondence between
the character strings and points in the Poincaré section.
Moreover, by the nature of the Poincaré map, the evolu-
tion of a character string corresponding to a point in = is
merely given by eliminating the first character and shift-
ing each remaining character to the left. Employing ar-
guments as outlined in Wiggins [25], a dynamical system
given by this type of character string contains an invari-
ant set which is dense in the Poincaré section and is sensi-
tive to initial conditions. This invariant set is related to
the set of irrational numbers in the set of real numbers.
Moreover, this invariant set constitutes a Smale
horseshoe.

Moreover, we see how this same argument applies even
when the density is not strictly in the zero-density limit.
So long as each region P is exposed to the hyperbolic
boundary, the Smale horseshoe should exist. The condi-
tions underlying such exposure require the presence of a
low density (so that mean free path is sufficiently long)
and a sufficiently high elasticity (so that the needed veloc-
ity transverse to gravity is provided). Strange attractors
are expected to exist under these conditions.

D. The limiting case e — 1

As guaranteed by the energy constraint, trajectories re-
sulting in a zero terminal velocity are possible in the per-
fectly elastic case. Such trajectories either bounce on a
single scatterer at the fixed point or bounce between a
series of scatterers at more or less at the same potential
energy. However, there exists numerical evidence that
nonzero terminal velocities exist in perfectly elastic cases.
Under such circumstances, one can show that an elastic
system will exhibit chaotic behavior. This conclusion
also follows from the energy constraint: If the system
falls indefinitely through the lattice, it must acquire ki-
netic energy. Eventually, a regime is established in which
gravitational effects on system behavior proves negligible,
namely the Lorentz gas limit. In this context, it is well to
recall from the analysis following Eq. (5) that when e — 1,
trajectories destabilize in the ¢ direction as well as in po-
sition space. Since energy is constant for the most part,
trajectories diverge in the Lorentz gas limit. Moreover,
the phase space for a Lorentz gas is compact as a conse-
quence of the energy constraint. Hence chaos must en-
sue. One can think of the system as slowly migrating be-
tween shells of Lorentz gas behavior, each such shell suc-
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cessively parametrizing a domain of increasing energy. A
more precise argument for the existence of chaos in
Lorentz gases is given by Sinai [5].

E. General observations

Since regions of = map into other parts of =, the at-
tractor on 2 possesses a self-affine character associated
with fractal sets. As discussed in Sec. II D, trajectories
that lie close to partition boundaries constitute those tra-
jectories that tend to increase in energy between col-
lisions. Moreover, these densely boundaried regions exist
in lattice-axis directions; consequently, border trajec-
tories correspond to leakage from those high-energy re-
gions that constitute the “fingers” of the attractor that
reach into large-v regions along lattice-axis directions.
Strange attractors and strange repellers dense with boun-
daries therefore tend to be high-energy attractors and re-
pellers possessing the aforementioned characteristics.
Moreover, periodic orbits tend to constitute low-energy
phenomena, since they avoid partition boundaries. Ulti-
mately, the existence of nontransient chaotic behavior re-
quires the existence of a Smale horseshoe generated by
homoclinic orbits.

Note that if lattice density is low, many unit cells are
‘“visible” to particles in a particular unit cell. Therefore,
the Poincaré section will be riddled with the partition
boundaries. But as lattice density is increased, the
scatterers in proximate unit cells will block more distant
unit cells. There will exist fewer partition boundaries in
the Poincaré section of such systems since the particles
can only encounter a few different unit cells upon the
next collision.

From the two special cases outlined above, one can
construct a scenario for which strange attractors are un-
likely to exist. In particular, such circumstances require:
(a) restricting the mapping so that the hyperbolic bound-
ary does not map onto itself and (b) maintaining low en-
ergies so that mappings onto the hyperbolic boundary
from other regions are limited. These two criteria are
achieved when the following criteria are met:

(i) Elasticity is low, so that a tendency exists for close
trajectories to converge.

(ii) Lattice density is high, so that available boundaries
are few, thereby mollifying the effects of convexity.

(iii) Trajectories avoid the fixed point, so that homo-
clinic orbits are not possible.

Unfortunately, the last condition is subtle since it de-
pends upon the details of the Poincaré map. Indeed, the
system’s complexity will become manifest in Sec. IV
when numerical simulations are presented. Ultimately,
whether homoclinic or periodic orbits exist depends on
the characteristics of the Poincaré map, which reflect the
system’s physical attributes. These special orbits dictate
phase flow and, concomitantly, govern observed system
behavior. The map is complex in general and sensitive to
the details implicit in the governing equations. As a
consequence, an appeal will be made to the detailed sys-
tem dynamics via numerical solution of the governing
equations over the parametric range of interest. These
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specific results will complement general results found in
this section and Sec. II D.

IV. DYNAMICAL SYSTEMS RESULTS

A. Periodic attractors

Calculations reveal the existence of periodic orbits in
Galton-board systems. Moreover, these orbits prove to
be stable under numerical roundoff errors, time discreti-
zation, and applied perturbations. Additionally, most
periodic states are observed to be parametrically robust.
Periodic orbits occupy a significant fraction of parameter
space; therefore, they may not be deemed pathological.
Most importantly, the quantitative and qualitative effects
of periodic systems on Galton-board behavior are drastic
and are manifested even at statistical levels. This severely
violates the conventional wisdom that Galton boards
necessarily demonstrate random processes in nature.

The factors leading to stable orbits are many. First,
inelasticity focuses close trajectories. Convexity’s
dispersing effect tends to be negated at lower elasticities.
Second, high-lattice-density shields hyperbolic boun-
daries in the unit cell partition. Put more physically, the
scatterers’ close proximity to one another restricts the
paths available to trajectories before the next collision.
Third, high-lattice-density shortens the mean free path.
The most important mode for decorrelating trajectories is
the velocity difference Av; a finite value for this parame-
ter causes trajectory divergence in x space [22]. Howev-
er, the degree of such divergence is functionally depen-
dent on time; thus, if the time between successive col-
lisions is limited, the degree of possible divergence is cor-
respondingly limited.

These factors provide a means by which partition
boundaries and hyperbolic boundaries may be avoided.
But a subtle balance exists between those forces which
create divergence (hyperbolic points and boundaries in
the unit-cell partition) and those which restrict diver-
gence (inelasticity and lattice density). Given the system
parameters, which of these factors dominates the
system’s ultimate behavior is not obvious. This is clear
from the following investigation of parameter space.

Figures 10(a) and 10(b) show sample parameter spaces
for hexagonal and square lattices, respectively. Figures
10(ai) and 10(bi) constitute parameter spaces for cir-
cumstances wherein gravity is directed along a minor lat-
tice axis. In each consecutive figure, the gravity vector is
rotated towards a major axis. Finally, Figs. 10(a vi) and
10(bvi) are parameter planes when gravity is directed
along a major axis. Different periodicity regions
represent different periodic orbit types. Figure 10 clearly
reveals the complexity of the Galton board’s bifurcation
structure.

Periodic cycles occur in many different varieties. Most
varieties are cycles that move along the major axis. Fig-
ure 11(a) shows the trajectory on the lattice for one such
case. This figure may be visualized as if it were the Gal-
ton board itself, with the scatterers hidden. The tendency
to move along a major axis is so strong that particles
move in a direction significantly different from that of
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FIG. 10. (a) Parameter space for hexagonal lattice; (b) parameter space for square lattice. (ai) and (bi) represent parameter planes
where gravity is oriented along a minor axis. (avi) and (b vi) represent parameter planes where gravity is oriented along a major axis.
The ordinate and abscissa correspond to e and ¥, respectively. Periodic and quasiperiodic states are shown shaded; chaotic states are
not. The algorithm used to generate these parameter spaces begins with allowing a trajectory from each case to stabilize. Then a
small perturbation is added and the difference between the original trajectory and the perturbed trajectory is measured. If the
difference remains small, the case is considered periodic or quasiperiodic. Conversely, if the difference explodes, the case is con-
sidered chaotic. Hence these diagrams distinguish cases where the Lyapunov exponents are respectively negative or positive.

gravity. This phenomenon will be seen later to also be
manifested at the statistical level, when terminal veloci-
ties are discussed. The major-axis period cycles tend to
occupy parameter space in tongues that stretch from high
lattice density and low elasticity to low density and high
elasticity. Figure 10 depicts many examples displaying
this behavior. Since all cycles within a region of parame-
ter space possess the same qualitative structure, the
lower-density analogs have greater distances to traverse
between scatterers than do their high-density cousins. As
more transverse velocity is needed between collisions,
more elasticity is needed to prevent degeneration of the
orbit between scatterers caused by the pull of gravity.
The major-axis periodic cycles exhibit symmetry
breaking when the gravity vector is rotated away from
alignment with an axis possessing lattice symmetry to
alignment with one devoid of such symmetry. Figure
11(b) represents a symmetric case that is broken into the
two asymmetric cases shown in Fig. 11(c) when the gravi-
ty vector is rotated 5° away from the axis of symmetry.
Note that the symmetry-broken cases follow major axes.
This is true in general. Figure 10 reveals that periodic or-
bits are less prevalent in cases where gravity is not paral-
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FIG. 11. Periodic cycles on the lattice. (a) Hexagonal lattice:
B=—90°,y=0.8,e=0.46. (b) Hexagonal lattice: B=—90"°,
¥ =0.85,6=0.05. (c) Hexagonal lattice: = —85°. (d) Hexago-
nal lattice: f=—90°,y =0.5,e =0.25.
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lel to an axis of lattice symmetry.

Minor-axis periodic cycles are structurally the simplest
class of periodic cycles. They are fairly sensitive to
gravity’s direction relative to the lattice, and they tend to
occur in circumstances for which the greatest symmetry
exists. Figure 11(d) represents an example of such a
periodic cycle on a Galton board. Figures 10(ai) and
10(bi) show the extent to which minor-axis periodicity
exists for lattice configurations. Regions wherein these
periodicities exist occupy triangular regions along the
e =0 axis.

All periodic cases exhibit chaotic transients when ini-
tial energy is sufficiently large. Explicitly, strange repell-
ers coexist in phase space with the stable periodic cycles.
Figure 11(a) depicts a trajectory displaying a chaotic
transient. Hence sensitivity to initial conditions may still
exist in periodic systems. However, it is crucial to under-
stand that such chaos is not stable. Over time, the trajec-
tories stabilize into well-defined, well-behaved orbits.
Moreover, no chaotic transient is observed if a low-
energy initial condition is selected.

B. Bifurcations

The chaotic transients described above suggest a mech-
anism for the indeterminacy observed in physical situa-
tions. Initial energies in our numerical simulations tend-
ed to be rather large. The ensuing chaotic transient was
consistent in qualitative structure with high-energy
chaotic attractors, i.e., attractors dominated by partition
boundaries. However, the chaotic transient eventually
loses energy and stabilizes into a low-energy periodic at-
tractor.

Figure 12 depicts a bifurcation from periodic to chaot-
ic behavior when high-energy chaos exists. A low-energy
periodicity explodes into a wildly erratic, high-energy
chaotic attractor. More appropriately, the transient that
precedes the periodicity gains more and more stability,
while the periodic attractor loses stability. The transient
ultimately becomes the attractor. Compare this bifurca-
tion to the one exhibited in Fig. 13. As the bifurcation
parameter is manipulated, the first periodicity loses
sufficient energy to just encounter the fixed point. A
crisis occurs: either the trajectory may continue along its
major axis or it may shift into another major-axis periodi-
city. But the process repeats itself and an aperiodic,
chaotic cycle is born from the homoclinic orbit connect-
ing two crises. As the bifurcation parameter is manipu-
lated further, the period between crises becomes
sufficiently short that a new periodicity is generated from
a combination of the two major-axis periodicities.

The dominant role played by major and minor axes is
clear. These axes govern the existence of homoclinic or-
bits and dominate the directions which periodic orbits
take. Therefore, these axes play a pivotal role in bifurca-
tions. Hence, in addition to the effects of inelasticity and
lattice density, the effects of lattice geometry are critical
in ascertaining the qualitative nature of stable behavior.
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C. Strange attractors

Systems possessing chaotic attractors exist. Indeed,
Fig. 10 clearly demonstrates that such systems dominate
parameter space. Ultimately, strange attractors represent
the classical random behavior ascribed to Galton boards.
Higher elasticities and lower lattice densities yield chaot-
ic steady states, consistent with results from preceding
sections. Furthermore, when the gravity vector lacks lat-
tice symmetry, chaotic cases are more prevalent. Figure
12(c) shows a typical chaotic trajectory. The erratic
behavior expected is clear.

Figure 14 shows the attractors on the Poincaré map for

15
(a)

15 b

(b)

FIG. 14. Examples of strange attractors on the Poincaré
map. Velocity space projections and 6-¢ projections. (a) Hex-
agonal lattice: B=90°,y=0.1,e =0.1. (b) Hexagonal lattice:
B=90°y=0.5,e=0.5. (c) Hexagonal lattice: S=90°y =0.85,
e=0.5. (d) Hexagonal lattice: B=90°,9 =0.85,e=0.8. (e) Hex-
agonal lattice: S=45°y=0.5,¢6=0.5.
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several chaotic states. All cases exhibit a biasing in direc-
tions parallel to gravity. There also exists a diffuse tex-
ture to the generally featherlike structure. This
diffusiveness is expected as a consequence of the leakage
in phase space discussed in Sec. II D. Indeed, a few stray
points occurring at very large v are not displayed in the
figures. Figure 14(a) depicts a low-density attractor. Its
self-affine structure is evident. Indeed, the base structure
appears to consist of two arcs near v=0. This structure
is most apparent in Fig. 14(b). The arcs represent low-
velocity particles sliding off scatterers. In the 6-¢ projec-
tions there also appear to be a series of vertical lines situ-
ated near these arcs and representing repeated bouncing
and subsequent sliding off the same scatterer. The lines
are most pronounced when elasticity is low, and tend to
fade when elasticity increases. Since trajectories accumu-
late in the regions represented by the sliding and bounc-
ing structures, they map in concentrated groups onto
other parts in the Poincaré section, propagating the
attractor’s fractal structure.

Further conclusions can be drawn from the existence
of these dense structures. Figure 14(c) shows a low-
energy chaotic attractor. Such attractors follow periodic
orbits until crises are encountered; the trajectory may
then engage in one of two new periodic orbits. The bifur-
cation seen in Fig. 13 involves a low-energy attractor.
Domination of the arcs at v=0 and its images is clear.
These structures represent the bouncing and sliding
which all homoclinic orbits must undergo when near the
fixed point. Such structures demonstrate the important
role played by the fixed point and homoclinic orbits in
low-energy chaos. Indeed, one may reassess the impor-
tance of homoclinic orbits in the other strange attractors
by noting how pronounced the arc at v=0 is. The less
pronounced the arc, the less important the role of homo-
clinic orbits and the more important the role of convexity
in decorrelation (and vice versa).

Figure 14(d) shows a strange attractor at high elastici-
ties. The detailed structure exhibited by other cases is
lost here. This observation is consistent with convexity
being the mechanism for decorrelation. Nevertheless, it
remains clear that the attractor projects itself in lattice-
axis directions. The importance of these directions be-
comes even clearer when Fig. 14(e) is examined. Here,
the fingers still project in the lattice direction, even when
the direction of gravity is neither along a major axis nor
along a significant minor axis.

V. STATISTICAL RESULTS

A. Ergodicity

The attractors on the Poincaré map for one trajectory
appear almost identical to the corresponding attractors
on the map for several trajectories. This implies ergodici-
ty on the attractor, wherein time averages and phase-
space averages are equal. To the extent that this is gen-
erally true, each steady-state trajectory is equivalent to
the attractor for the entire phase flow. In such cir-
cumstances, one can merely select any arbitrary trajecto-
ry and find long-time averages. These averages equal en-
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semble averages over phase points on the attractor for er-
godic systems.

Further numerical evidence points to the ergodicity of
Galton-board systems, as summarized in Table I. A close
correspondence between ensemble averages and trajecto-
ry time averages is observed for a diverse set of cases, in-
cluding both periodic and chaotic orbits. As a cautionary
note, it should be pointed out, however, that some varia-
tion exists in the trajectory time averages if different
cutoff times are chosen. There also exist variations in en-
semble averages for differing ensemble sizes. Neverthe-
less, strong empirical evidence exists for ergodicity. Er-
godicity would support our observations that ensemble
averages approach long-time stationary values that are
independent of initial conditions. Any deviations from
such steady-state behavior appear as noise (disregarding
the periodic cases). Moreover, these deviations become
smaller with increasing ensemble size. All trajectories
sample the attractor without bias, per the requirement of
ergodicity. Fluctuations in steady ensemble averages for
periodic cases also wane as ensemble size is increased.
This is consistent with the existence of ergodicity in the
periodic attractor.

B. Terminal velocity and dispersion

Each point in Fig. 15 represents a mean terminal veloc-
ity for a given gravity direction, lattice density, and elas-
ticity. We use the term “terminal velocity” to indicate
the limiting average velocity of an ensemble. Since the
lattice geometry examined was square, only gravity direc-
tions from 0° to 45° are represented. Data for the remain-

TABLE 1. Examples of statistical averages for systems exhib-
iting ergodicity.

Quantity  Ensemble steady state  Trajectory time average
y=0.5,e=0.5,9=60°,3=90°
(v) 0.0 0.0
(v,) 0.66 0.66
o? 1.5 1.5
y=0.5,e=0.5,=60°,=45"
(vy) 0.47 0.46
(vy) 0.55 0.57
o2 1.75 1.78
vy=0.5,e =0.5,¥=60°,8=1.0 rad
(v, 0.5 0.47
(vy) 0.8 0.78
o2 3.0 2.70
y=0.5,e =0.1,=60°,3=90°
(v,) 0.0 0.0
(vy) 0.43 0.43
o2 0.23 0.22
¥=0.5,e=0.5,p=90°, 3=60°
(vy) 0.33 0.33
(vy) 0.63 0.66
ol 1.80 1.90

10, ‘

E |

|

» i

| : |

_10 |
-10 0 10

*
A

FIG. 15. Mean terminal velocities for a square lattice. Each
point represents one set (3,7, e).

ing directions may be filled in by reflecting this sector
about symmetry axes. A mean terminal velocity exists
since velocity space constitutes a part of phase space.
The attractor would then have a mean velocity value.
Moreover, since ergodicity apparently exists, a mean ter-
minal velocity necessarily results since the ensemble aver-
age equals the average velocity of the attractor. One ob-
vious conclusion gleaned from Fig. 15 is that mean termi-
nal velocity is substantially dependent upon the orienta-
tion of gravity relative to the lattice, particularly with
respect to the lattice axes. Moreover, although not
shown in the figure, given a particular relative orientation
of gravity, all terminal velocities are biased towards the
major-axis direction, including chaotic states. Portions
of scatterers are shielded by other scatterers in a sys-
tematic manner, tending to force particles along major-
axis directions. This effect is more pronounced when
periodic states are involved; in particular, terminal veloc-
ities follow lattice axes regardless of the direction of grav-
ity. The important role played by major and minor axes
is once again evident.

Another interesting result concerning terminal veloci-
ty, is the existence of such a velocity for perfectly elastic
cases. Figure 16 shows the time evolution of the ensem-
ble velocity for a perfectly elastic case. This velocity ap-
pears to either approach an asymptotic value (despite
large fluctuations around that value), or it appears to
change at a very slow rate (with fluctuations that virtual-
ly swamp any detectable trend). The fluctuations are a
consequence of finite ensemble size.

Numerical evidence supports the premise that the
strange attractors and repellers present in Galton-board
systems are ergodic. To the extent this is true, one may
treat the systems as a random walk in the positional
plane, where the probability of moving between x and
x+ Ax after the Nth collision is dictated by the attractor.
Since the attractor possesses a ‘‘cut-and-paste”
demeanor, little observable correlation exists between one
point in 2 and its image under the Poincaré map. Hence
the walk may effectively be treated as random. Chan-
drasekhar [26] proves that as N becomes large, the
mean-square displacement grows linearly with time, such
temporal behavior representing the Lagrangian definition
of a diffusive process. Hence one can expect the ensemble
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FIG. 16. Terminal velocity for perfectly elastic case. Hexag-
onal lattice: =90°,y =0.5.

behavior for systems exhibiting strange attractors to be
diffusive. Moreover, one can expect the ensemble
behavior for systems exhibiting strange repellers to be
diffusive also, so long as the ensemble stays near the re-
peller.

Figure 17 compares the x-variance (defined as
(x-x)—{(x)?) time evolution for an inelastic case with
that for an elastic case. A proper diffusion is observed
when e#1. When the system is perfectly elastic, the
dispersive process fails to be diffusive since the x variance
possesses a 372 rather than a ¢! dependence. Energy con-
servation principles explain this as follows:

d{v-v) :<d(v-v) >=<2v'ﬂ
dt dt dt

However, the existence of a terminal velocity requires
that {v) be a constant, whence

>=(2v-g)=2g-(v) )

(v-v)=2g-(v)t+const ,

leading to the conclusion that
172
|vrelative| ~t .
For random walks, the x variance is proportional to the
system’s characteristic velocity. This velocity is governed
by the ensemble’s velocity variance. Since the rate at
which each step of the random walk is taken tends to be
much faster than the rate of increase of the v variance,
the latter variance increase may be accounted for as a
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FIG. 17. x-variance dependence on elasticity. Hexagonal lat-
tice: B=45°,y=0.5,e =0.5 and 1.
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FIG. 18. x variance for periodic case. Hexagonal lattice:
B=90°y=0.5,e =0.1.

t1/2 scaling. Hence the total x variance dependence is ex-

pected to be 73/2, as observed in the simulations [27].

Figure 18 shows an x-variance evolution for a periodic
case. The variance approaches a constant that is relative-
ly insensitive to ensemble size. Such behavior constitutes
a severe violation of physical expectations for dispersive
media. Nevertheless, it is a natural consequence of the
periodicity: since each trajectory stabilizes onto a unique
periodic attractor in the same fashion, each trajectory
necessarily moves in the same direction at the same rate,
i.e., the x variance reaches a steady value. This consti-
tutes yet another statistical manifestation of the complex
phase-space structure intrinsic to Galton boards.

Finally, Fig. 19 shows the x variance evolution for a
periodic case manifesting a symmetric pair of periodic cy-
cles. These cycles constitute two attractors in the same
phase space with disjoint basins of attraction [an example
of scenario (iv) given in Sec. III B]. One cycle proceeds in
the positive x; direction, whereas the other proceeds in
the negative x,; direction. Initially, we see the expected
chaotic transient (wherein the x variance grows linearly
with time). However, once the trajectories begin to stabi-
lize into their respective orbits, half move at a constant
velocity in one direction while the other half move at a
constant velocity in the opposite direction. The x vari-
ance then grows with the square of time. A bimodal dis-
tribution results with the two packets receding from each
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FIG. 19. x variance for symmetric periodic case. Hexagonal
lattice: =90°y =0.8,e=0.46.
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other at constant speed. Moreover, each packet main-
tains a fixed shape which does not disperse. Hence, even
greater complexity results from the subtleties of the
phase flow’s structure.

VI. CONCLUSIONS

The Galton board’s phase flow structure exhibits many
subtle characteristics. Lattice axes play a dominant role
in stability, phase flow topology, and statistical observa-
tions. Smale horseshoes are generated by homoclinic or-
bits whose existence is dictated by system characteristics.
The horseshoes lead directly to deterministic chaos in the
system. These horseshoes may be created by increasing
system elasticity, decreasing lattice density, or breaking
system symmetries. Trajectory instability arises from
scatterer convexity and from homoclinic orbits defined by
the lattice geometry as well as by the direction of lattice
axes relative to gravity. Trajectory stability arises from
inelasticity and trajectory path restrictions imposed by
lattice density. A subtle balance between instability and
stability determines which behavior ultimately results.

Unfortunately, there remains an unsatisfactory lack of
mathematical rigor in the given analysis. Few of the sug-
gestions given in Sec. II and III are backed by solid proof
or derivation. Therefore, one important line of investiga-
tion is the precise derivations of claims made in those sec-
tions. But the most serious obstacle to such an investiga-
tion is the lack of a priori knowledge of period orbit
structures and homoclinic cycles. If one can systematical-
ly identify where such structures exist without resorting
to the numerical computations, one can probably identify
certain local characteristics of the bifurcation, based on
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Melnikov’s method or similar techniques [25]. Another
avenue for future study is a quantitative analysis of the
terminal velocity and diffusivity of cases with chaotic at-
tractors. Another possibility is the classification of stable
periodic and quasiperiodic cases via the power spectrum.
Here the velocity autocorrelation function will be useful.

Though there are many avenues of investigation yet to
pursue, several things can be concluded from our present
investigation. The general assertion that Galton boards
represent random processes in nature appears unsupport-
ed by theory, at least to the extent that our model mirrors
the true physics of the phenomena. Although most cases
exhibit sensitivity to initial conditions, well-behaved
periodic attractors nevertheless occupy a significant frac-
tion of parameter space. These periodic attractors are
not pathological. Furthermore, the bifurcation structure
is not straightforward, and the cases exhibiting strange
attractors vary in texture. Finally, qualitative complexity
manifested by the diverse phase flow topology is severe,
and is observable even at statistical levels. The Galton
board reveals intricacies in behavior that belie its
superficial simplicity.
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